Planują budowę badawczego reaktora nowej generacji

Naukowcy z Narodowego Centrum Badań Jądrowych (NCBJ) rozważają budowę nowego reaktora w Świerku. Podpisany list intencyjny pomiędzy brytyjskim konsorcjum U-Battery a NCBJ otwiera drogę do powstania pierwszego w Polsce badawczego reaktora wysokotemperaturowego (HTGR). Umowa jest jednym z owoców dwudniowej wizyty przedstawicieli Ministerstwa Energii w Wielkiej Brytanii.

We wtorek, 24 maja br. Dominic Kieran-dyrektor zarządzający URENCO oraz przedstawiciel brytyjskiego konsorcjum U-Battery (URENCO, AMEC FW, ATKINS, Cammell-Laird, Laing O’Rourke) oraz prof. Krzysztof Kurek-dyrektor NCBJ podpisali list intencyjny o podjęciu przygotowań do budowy w instytucie w Świerku wysokotemperaturowego reaktora chłodzonego gazem (ang. High Temperature Gas Reactor – HTGR). Technologia ta jest szczególnie obiecująca, ze względu na możliwości wytwarzania ciepła przemysłowego i odporność na wszelkiego rodzaju awarie.

Kogeneracja jądrowa to proces jednoczesnego wytwarzania energii elektrycznej i ciepła w reaktorach jądrowych, z której mogą korzystać, w sposób dedykowany, duże zakłady przemysłowe – podkreśla prof. Grzegorz Wrochna, przewodniczący europejskiej Inicjatywy Przemysłowej Kogeneracji Jądrowej (Nuclear Cogeneration Industrial Initiative – NC2I) – Oznacza to, że reaktory takie mogą mieć niezbyt wielką moc cieplną rzędu kilkuset megawatów, za to dostarczać ciepło przemysłowe o wysokich parametrach. To wystarczy aby np. strategiczne gałęzie przemysłu w Polsce dysponowały własnymi źródłami energii całkowicie uniezależniając się od zewnętrznych dostawców. Takim przykładem może być branża chemiczna lub rafinerie.

Reaktory wysokotemperaturowe HTGR, dzięki zastosowaniu specjalnego paliwa, w którym uran chroniony jest warstwami węglika krzemu, oraz obojętnego chemicznie helu jako chłodziwa, pozwalają bezpiecznie operować znacznie wyższymi temperaturami niż typowe reaktory chłodzone wodą. To pozwala na uzyskanie doskonałych parametrów ciepła przemysłowego. Odporność paliwa na warunki ekstremalne powoduje, że nawet przy awarii wszystkich systemów bezpieczeństwa i całkowitej utracie chłodziwa, reaktor samoczynnie wychładza się, nie grożąc emisją substancji radioaktywnych do otoczenia. Dzięki temu, reaktory mogą być budowane w bezpośredniej bliskości innych instalacji przemysłowych i produkować energię elektryczną oraz ciepło znacznie bliżej odbiorcy, nie narażając go na straty przesyłowe.

Reaktory HTGR ze względów konstrukcyjnych nie mogą mieć tak dużych mocy, jak reaktory lekkowodne. Nie nadają się więc do realizacji programu polskiej energetyki jądrowej, zakładającego budowę reaktorów o łącznej mocy elektrycznej 6000MW. Zastąpienie 4-6 wielkich reaktorów lekkowodnych kilkudziesięcioma reaktora HTGR byłoby zdecydowanie zbyt kosztowne. Jednakże zastosowanie ich tam, gdzie prócz energii elektrycznej niezbędne jest ciepło o wysokiej temperaturze, jest ekonomicznie dobrze uzasadnione.

Naukowcy ze Świerku chcą aby do 2025 roku powstał badawczy reaktor wysokotemperaturowy o mocy 10MWt i elektrycznej 4MWe.

Źródło: NCBJ